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Dyadic Green’s Function of Multilayer Cylindrical
Closed and Sector Structures for Waveguide,
Microstrip-Antenna, and Network Analysis

Michael Thiel and Achim DreheiSenior Member, IEEE

Abstract—A clear and systematic method to derive the spec- Q) metaliization

tral- and space-domain dyadic Green's function of arbitrary
cylindrical multilayer and multiconductor structures is proposed.
The derivation is either done for a circumferentially closed or
a cylindrical sector structure, which is bounded by electric or
magnetic walls in an azimuthal direction. The solution for the
dyadic Green'’s function in the spectral domain is obtained via
an equivalent circuit. Relations between the spectral and space
domains for the dyadic Green’s functions are derived using
eigensolution expansions. Finally, the dyadic Green’s function is
applied to the problem of finding the propagation constants of the
two-layer dielectric rod.
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~ magnetic wall

o . . Fig. 1. Multilayer cylindrical microstrip structure and coordinate definitions.
Index Terms—Cylindrical microstrip networks and antennas,

cylindrical sector structures, cylindrical waveguides, dyadic
Green'’s function. II. ANALYSIS

The structure may appear as is shown in Fig. 1, along with the
. INTRODUCTION corresponding coordinate definitions. In thelirection, the ex-

OR FUTURE RF applications, more and more conformagnsion of the structure is infinite. The layers are assumed to be
antennas are needed. In many cases, cylindrical microstiipmogeneous and in an azimuthal direction either bounded by
antennas fulfill the desired properties. If the analysis is doéectric or magnetic walls or unbounded so that the circumfer-
with an integral-equation technique, the dyadic Green’s fungnce of the structure is closed. In such a structure, the solution
tion may serve as kernel of the formulation. The Green’s funef waveguide or microstrip structures can be reduced to system
tion can also be used for the analysis of waveguiding structur@guations, which involve only the tangential field components
which do not contain any metallizations. in the interfaces of the layered structure. The dyadic Green's

Solutions for dyadic Green’s functions of closed cylindricaunction fulfilling the inhomogeneous vector-wave equation
structures in the spectral domain can be found in [1] and [2],
for space domain in [3] and [4], and for perfectly conducting
cylindrical sector structures in [5].

This paper presents the derivation of the spectral- anci]
space-domain dyadic Green’s function for closed cylindricgf
and cylindrical sector structures consisting of an arbitrary
number of layers with metallizations in the interfaces. To
obtain the spectral-domain solution, a known equivalent-circuit ~ Grr (¢ — @',z — 2') =
approach [6] has been applied to the cylindrical problem. Im-
portant relations for the transformation of the spectral—domz?%%

t

(VxVx—k)G(r—1')=—jwpls(r—1') (1)

erel is the unitary dyad can be written as

thap.kk’ Gzpz.kk’
s 5 . 2
ng:v,kk’ Gzz,kk’ ( )

solution in the space domain have been derived by means of 2 Is used t/o setup a relat.lor? bet'ween .the electric current in
X . ; e interface:’ and the electric field in the interfade
eigensolution expansion. The procedure to derive the Green’s dyad starts from the
The presented way to determine the Green’s dyad can boe rce-?ree ave equation in cviindrical cogrd'nates
applied to problems of microstrip or network analysis, e.g., T wave equation in cylindn !
combination with the spectral-domain approach. To demon-

strate the applicability to waveguiding structures, an example ) ) 92 92
is shown below. +ta5+or e+ 5| |v=0 (3

Por\"0p) T 02 2
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TABLE | o . T
EIGENSOLUTIONSACCORDING TOBOUNDARY COMBINATIONS [ELECTRIC rk+1 N
(el.), MAGNETIC (mag.), ERIODIC (per.)] £ £ N
“~ k )
\ /E:L‘\\ / g /’9
Boundary v=E, Y =H, £ LS, P
combinations Mode i Mode i Vi .o. Pr-
el./el. sin(vip) cos(vip) in
’ ’ i_“"’ . Fig. 2. Stratified dielectric with corresponding notations.
mag./el. cos(vip) sin(vip) ﬁ_iL%
periodic sin(vip + @) | cos(vip + @) i spectral domain

per. with (7) || exp(—juvip) | exp(—jvip)

o o ~
(Ipa—p <pa—p> v+ (kpp)zl) ¥ =0 (10)

constants, have been normalizedigy: The remaining tangen-

tial field components are given through with k2 = e, — k2 and the diagonal matrik = diag(v;)
following from the vectorial notation in (5)—(7X is the uni-
1 02 .0 tary dyad. For cylindrical sector structures, the fields in wave
02 E, | _ ;az&p J“’”a_p E, equation (3) are replaced by the modal expansions in (5) and
<€”“’” + a_> [UOHJ - .0, 07 [TIOHZ] (6) according to Table I. Combining the orthogonality proper-
TJEr dp P 0200 ties of the expansion functions and a complex Fourier transform
(4) alongz, the wave equation in the spectral domain (10) is also
with No = \//l/o/&fo. obtained.

As a general solution of (3), we use the eigensolution or Within an arbitrary layei (Fig. 2), the general solutions of

modal expansions of the field components in thelirection these Bessel differential equations (10) are composed of Bessel
given by one of the following Fourier seriés: and Neumann functions

N Uy, = Jy (kpep) Ak + Yo (koep)Be,  pro1 < p < pi
D(p, ) = — J— Zz/)< D(p)sin (vip) = t, - @ (5) ’ ’ (11)

where the matrix notatio@, = diagC,,) is used. If the inner

W(p, ) = <¢(0) n 22 O COS(}/{@)) B layer extends t@ = 0, the fields must be finite in this point so

that
=1

©6) T, = Jv(kq0p) Ao, 0<p<po (12)

1 ~i , ~
b(p: ) ~ %0 Z PO (p) exp (—jrip) = te - ¥ () has to be chosen, and if the structure is radially open, the radia-
=T tion condition must be fulfilled necessitating

with v = E., H. and the boundary combinations in Table |I.
Pp=t- U is mterpreted as scalar product airdonly contains

the coefficients)"). The anglepo = @, — @, is defined in within the outer layer 4 — o). The sign ofk, =

Fig. 1, wherep, = 0, 9, = o, and0 < ¢ < 2m. If there /¢, " k2 has to be chosen such that
are no walls and the circumference of the structure is closed,

periodic solutions are obtained. For that, the complex Fourier Re(k,) > 0orIm(k,) <0 (14)

series (7) can be used and additionally assuming a wave proF?
gatione=i%:* in »-direction, which implies a complex Fourier olds to get only outgoing or decaying waves according to the

transform along the-coordinate, the two-dimensional Fourier>0mmerfeld’s radiation condition [7]. By using (11) and the

G =HY (kpnp)An,  pno1 <o (13)

transform derivative with respect t@ on both sides of the layek, the
unknown coefficient vectord ;, andB, are eliminated and the
2m poo g following relation is set up:
= / / (i, 2)el* el P dzdy (8)
(1) oo . i \’IVINk_l —p ﬁék =1 6’5_1 (15)
Ve 2) =15 D / ) (k) emIFZemed,  (9) dp | Wy LR Tk | | W
™ = oo ) —o0 N—_————
Ty

is obtained for a closed cylindrical structure without azimuthglerein are
boundaries. Using (8), the wave equation (3) transforms into the

A . ~1 -1
Py, =diag (pllkpk—l‘/pllkpk )

1 - _ Qi =kokPraur
p = pko, z = Zko, k, = k,/ko, andk. = k. /ko, where the unnormal- _
ized quantities are indicated by a bar Tvik =kpkPk—1Tvk

2For reasons of simplicity, the sine-series starts with 0. Suk :kgkpkpk_lsyk (16)
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with the cross-products of Bessel functions [Bl., qu:, p \ 1| i
Tyk, andsy, and the matrix notatio€y, = Cy(k,rpr) and Po il . _ :
Cui-1 = Culkyepr—1). Applying (8) to (4) or using the \ | Y, lii., K, f«],l Y,
modal expansions (5) and (6) in combination with the Fourier \ \E" 4

transform along the-coordinate, (4) is given in the spectral f

domain by Fig. 3. Twice-stratified dielectric rod.

E,

E,é
,rIOHl,O

770Hz

17)
The derivation with respect tp is replaced by (15) and, after
some algebraic manipulations, one finally obtains the hybrg, ,, (<p @ z—2")
matrix form ([6, eq. (18)]) with the matri¥, where the defi-

(erptr — k2) source with amplitude 1 is used. The relation between the spec-
tral and space domains for the dyadic Green'’s function of closed

cylindrical structures is then described by

17. ; 9
—jé‘rlw —;kzu

nitions = / é;]z e ik:(z=2) g—ivile—2") g
~ ~ pk/ 1=—00
Ek =7 pliE(Pk andﬁk = —"No _I:IZk (18) (25)
E.; prH ok o
) o L ~ whereG,,;, belongs to a single mode in the spectral domain.
are used in the cylindrical case. The submatriceK pfconsti-  For cylindrical-sector structures, the modal expansions (5)
tute the following: and (6) have to be taken into account for the fields and sources.

Together with the Fourier transform alongthe space-domain

o ! solution in case of electric walls is obtained [10] as follows:
Ty

v, lq., kb v (Ty +3y)

k
Gop ki (0=’ 2—2")
7, o [— (Er[l/rgy + kfuzp,,) kp_2 k.vpy, ] o

= 1 [~/ 1 = 2 .
2¢, kvpy —k}py - — (—G“’) (k) +——3"GY L (ke
: 21 J_ oo \opry  PEHE (k) Popk ; et (k)
}"; - ™ kipy kZVpV 1 !
" o0, | kavpy (erprsy + k2v7py) k) 2 . -cos (V") cos (WP)) e~k (==") dk, (26)
~ —7r G 2 ’ - /. -z
B.=~| v 0 g Gromlodlz=d)
—kk v (v +ay) ay 1> 2
¢ —5 [ = 5 G (k) sin (03 5 )
To obtain the admittance matrix ([6, eq. (23)]) in cylindrical oo POPk
coordinates, we combine (12) and (13) with (17) so that eIk (22 >de 27)
S :F’U:Vé n —k2. —k.v G b (QD_QD/ Z_Z/)
o s | k| ®0_ 3 '
nplnPln= n = — " -cos (v;¢") sin (v;
with =t
2 -e_Jk =" dk, (28)
Yon :kzz - 5r0,n/f'r0,np(%,n—1u12/0,n (21) G kr (90_90 yRTZ )
p0,n 0o
1 < 2 ~ (i
and = G (k2) - sin (v;¢) sin (v;
21T J oo COPR ; zz,kk ( ) ( (P) ( (P)
upo =Jy (kpopo) I (Kpopo) (22) T g (29)
-1
. =Hy’ )(kpnpn—1)H§/2) (kpnpn—1)- (23) The relations for a combination of magnetic/magnetic or elec-

tric/magnetic walls are obtained in the same way.
Continuity is taken into account ([6, eq. (25)]) with the cylin-

drical definition of the currend,,, = no[J m kazm]

The dyadic Green’s function in the spectral domain is now
derived [6] so that As an example, we consider the twice-stratified dielectric rod

in Fig. 3. The following system equation:

I1l. A PPLICATION

E=G-J (24)
vE — (v v\ R — v (5 —
is obtained. The solution in the spectral domain is applicableforYEl - <Y + Y2> Ei=0 & det (Y(kz)) h
closed cylindrical and cylindrical sector structures. (30)
The Green’s function is defined as the response of the electith
field to a unit source [9]. The electric field from (24) is trans- ~ (u)

u ~ ~ o~ ~ ~ o~ —1
formed to the space domain by (9) and, for the current, a point Yy ' = (Y1 + Blyo) (Vl + Z1Y0) (31)
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Fig. 4. (a) Propagation constants of the dielectric rod in Fig. 3, normalized
by k. (b) Intensity of energy flow, represented by Poynting vedor f,
10%3 Hz, po = 8.55 - 107 m, po = poko, p1 = T+ po, €ro = 2.56,
.1 = 2.3104, ande,» = 1.

has to be solved to obtain the propagation constaptsie
compared the dominant mode to the result obtained with Ansoft
HFSS 6) [see Fig. 4(a)], where higher order modes could not be
identified directly. The intensity of energy flow [see Fig. 4(b)]
is given by the Poynting vector

P— %%(E « H*) -e. (32)

in the z-direction, wherék = [E,,E,] andH = [H,, H,]. It

has been computed for teH ; mode marked in Fig. 4(a) with

the normalized propagation constént= 1.47429.

IV. CONCLUSION
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