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Dyadic Green’s Function of Multilayer Cylindrical
Closed and Sector Structures for Waveguide,
Microstrip-Antenna, and Network Analysis

Michael Thiel and Achim Dreher, Senior Member, IEEE

Abstract—A clear and systematic method to derive the spec-
tral- and space-domain dyadic Green’s function of arbitrary
cylindrical multilayer and multiconductor structures is proposed.
The derivation is either done for a circumferentially closed or
a cylindrical sector structure, which is bounded by electric or
magnetic walls in an azimuthal direction. The solution for the
dyadic Green’s function in the spectral domain is obtained via
an equivalent circuit. Relations between the spectral and space
domains for the dyadic Green’s functions are derived using
eigensolution expansions. Finally, the dyadic Green’s function is
applied to the problem of finding the propagation constants of the
two-layer dielectric rod.

Index Terms—Cylindrical microstrip networks and antennas,
cylindrical sector structures, cylindrical waveguides, dyadic
Green’s function.

I. INTRODUCTION

FOR FUTURE RF applications, more and more conformal
antennas are needed. In many cases, cylindrical microstrip

antennas fulfill the desired properties. If the analysis is done
with an integral-equation technique, the dyadic Green’s func-
tion may serve as kernel of the formulation. The Green’s func-
tion can also be used for the analysis of waveguiding structures,
which do not contain any metallizations.

Solutions for dyadic Green’s functions of closed cylindrical
structures in the spectral domain can be found in [1] and [2],
for space domain in [3] and [4], and for perfectly conducting
cylindrical sector structures in [5].

This paper presents the derivation of the spectral- and
space-domain dyadic Green’s function for closed cylindrical
and cylindrical sector structures consisting of an arbitrary
number of layers with metallizations in the interfaces. To
obtain the spectral-domain solution, a known equivalent-circuit
approach [6] has been applied to the cylindrical problem. Im-
portant relations for the transformation of the spectral-domain
solution in the space domain have been derived by means of an
eigensolution expansion.

The presented way to determine the Green’s dyad can be
applied to problems of microstrip or network analysis, e.g., in
combination with the spectral-domain approach. To demon-
strate the applicability to waveguiding structures, an example
is shown below.

Manuscript received July 30, 2001.
The authors are with the DLR Institute of Communications and Navigation,

German Aerospace Center, D-82234 Wessling, Germany.
Digital Object Identifier 10.1109/TMTT.2002.804637

Fig. 1. Multilayer cylindrical microstrip structure and coordinate definitions.

II. A NALYSIS

The structure may appear as is shown in Fig. 1, along with the
corresponding coordinate definitions. In the-direction, the ex-
tension of the structure is infinite. The layers are assumed to be
homogeneous and in an azimuthal direction either bounded by
electric or magnetic walls or unbounded so that the circumfer-
ence of the structure is closed. In such a structure, the solution
of waveguide or microstrip structures can be reduced to system
equations, which involve only the tangential field components
in the interfaces of the layered structure. The dyadic Green’s
function fulfilling the inhomogeneous vector-wave equation

(1)

where is the unitary dyad can be written as

(2)

is used to set up a relation between the electric current in
the interface and the electric field in the interface.

The procedure to derive the Green’s dyad starts from the
source-free wave equation in cylindrical coordinates

(3)

for the independent tangential-field components . A
time-dependence has been assumed and the longitu-
dinal and radial coordinates, as well as the spectral propagation
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TABLE I
EIGENSOLUTIONSACCORDING TOBOUNDARY COMBINATIONS [ELECTRIC

(el.), MAGNETIC (mag.), PERIODIC (per.)]

constants, have been normalized by.1 The remaining tangen-
tial field components are given through

(4)
with .

As a general solution of (3), we use the eigensolution or
modal expansions of the field components in the-direction
given by one of the following Fourier series:2

(5)

(6)

(7)

with and the boundary combinations in Table I.
is interpreted as scalar product andonly contains

the coefficients . The angle is defined in
Fig. 1, where , , and . If there
are no walls and the circumference of the structure is closed,
periodic solutions are obtained. For that, the complex Fourier
series (7) can be used and additionally assuming a wave propa-
gation in -direction, which implies a complex Fourier
transform along the-coordinate, the two-dimensional Fourier
transform

(8)

(9)

is obtained for a closed cylindrical structure without azimuthal
boundaries. Using (8), the wave equation (3) transforms into the

1� = ��k , z = �zk , k = �k =k , andk = �k =k , where the unnormal-
ized quantities are indicated by a bar

2For reasons of simplicity, the sine-series starts withi = 0.

Fig. 2. Stratified dielectric with corresponding notations.

spectral domain

(10)

with and the diagonal matrix diag
following from the vectorial notation in (5)–(7). is the uni-
tary dyad. For cylindrical sector structures, the fields in wave
equation (3) are replaced by the modal expansions in (5) and
(6) according to Table I. Combining the orthogonality proper-
ties of the expansion functions and a complex Fourier transform
along , the wave equation in the spectral domain (10) is also
obtained.

Within an arbitrary layer (Fig. 2), the general solutions of
these Bessel differential equations (10) are composed of Bessel
and Neumann functions

(11)
where the matrix notation diag is used. If the inner
layer extends to , the fields must be finite in this point so
that

(12)

has to be chosen, and if the structure is radially open, the radia-
tion condition must be fulfilled necessitating

(13)

within the outer layer ( ). The sign of
has to be chosen such that

or (14)

holds to get only outgoing or decaying waves according to the
Sommerfeld’s radiation condition [7]. By using (11) and the
derivative with respect to on both sides of the layer, the
unknown coefficient vectors and are eliminated and the
following relation is set up:

(15)

Herein are

(16)
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with the cross-products of Bessel functions [8] , ,
, and and the matrix notation and

. Applying (8) to (4) or using the
modal expansions (5) and (6) in combination with the Fourier
transform along the -coordinate, (4) is given in the spectral
domain by

(17)
The derivation with respect to is replaced by (15) and, after
some algebraic manipulations, one finally obtains the hybrid
matrix form ([6, eq. (18)]) with the matrix where the defi-
nitions

and (18)

are used in the cylindrical case. The submatrices ofconsti-
tute the following:

(19)

To obtain the admittance matrix ([6, eq. (23)]) in cylindrical
coordinates, we combine (12) and (13) with (17) so that

(20)

with

(21)

and

(22)

(23)

Continuity is taken into account ([6, eq. (25)]) with the cylin-
drical definition of the current .

The dyadic Green’s function in the spectral domain is now
derived [6] so that

(24)

is obtained. The solution in the spectral domain is applicable for
closed cylindrical and cylindrical sector structures.

The Green’s function is defined as the response of the electric
field to a unit source [9]. The electric field from (24) is trans-
formed to the space domain by (9) and, for the current, a point

Fig. 3. Twice-stratified dielectric rod.

source with amplitude 1 is used. The relation between the spec-
tral and space domains for the dyadic Green’s function of closed
cylindrical structures is then described by

(25)

where belongs to a single mode in the spectral domain.
For cylindrical-sector structures, the modal expansions (5)

and (6) have to be taken into account for the fields and sources.
Together with the Fourier transform along, the space-domain
solution in case of electric walls is obtained [10] as follows:

(26)

(27)

(28)

(29)

The relations for a combination of magnetic/magnetic or elec-
tric/magnetic walls are obtained in the same way.

III. A PPLICATION

As an example, we consider the twice-stratified dielectric rod
in Fig. 3. The following system equation:

(30)
with

(31)
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Fig. 4. (a) Propagation constants of the dielectric rod in Fig. 3, normalized
by k . (b) Intensity of energy flow, represented by Poynting vectorP . f =

10 Hz, �� = 8:55 � 10 m, � = �� k , � = 7 � � , " = 2:56,
" = 2:3104, and" = 1.

has to be solved to obtain the propagation constants. We
compared the dominant mode to the result obtained with Ansoft
HFSS ( ) [see Fig. 4(a)], where higher order modes could not be
identified directly. The intensity of energy flow [see Fig. 4(b)]
is given by the Poynting vector

(32)

in the -direction, where and . It
has been computed for the mode marked in Fig. 4(a) with
the normalized propagation constant .

IV. CONCLUSION

A systematic approach to derive the dyadic Green’s function
in the spectral domain has been applied to cylindrical coordi-
nates. The procedure is valid for closed cylindrical and cylin-
drical sector structures. For both, necessary relations between
the spectral and space domains have been derived. With these,
the reaction integrals in the method of moments (MoM) for-
malism can be transformed into the spectral domain. This en-
ables the analysis of microstrip antennas and networks on mul-
tilayer cylindrical closed and sector structures with the spec-
tral-domain approach using the presented dyadic Green’s func-
tions. Through the solution of a system equation, the propaga-
tion constants of a waveguide structure were obtained.
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